Photoinduced Ullmann C-N coupling: demonstrating the viability of a radical pathway.

نویسندگان

  • Sidney E Creutz
  • Kenneth J Lotito
  • Gregory C Fu
  • Jonas C Peters
چکیده

Carbon-nitrogen (C-N) bond-forming reactions of amines with aryl halides to generate arylamines (anilines), mediated by a stoichiometric copper reagent at elevated temperature (>180°C), were first described by Ullmann in 1903. In the intervening century, this and related C-N bond-forming processes have emerged as powerful tools for organic synthesis. Here, we report that Ullmann C-N coupling can be photoinduced by using a stoichiometric or a catalytic amount of copper, which enables the reaction to proceed under unusually mild conditions (room temperature or even -40°C). An array of data are consistent with a single-electron transfer mechanism, representing the most substantial experimental support to date for the viability of this pathway for Ullmann C-N couplings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanistic investigation of the photoinduced, copper-mediated cross-coupling of an aryl thiol with an aryl halide.

Photoinduced, copper-catalyzed cross-coupling can offer a complementary approach to thermal (non-photoinduced) methods for generating C-X (X = C, N, O, S, etc.) bonds. In this report, we describe the first detailed mechanistic investigation of one of the processes that we have developed, specifically, the (stoichiometric) coupling of a copper-thiolate with an aryl iodide. In particular, we focu...

متن کامل

A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (O °C).

Building on the known photophysical properties of well-defined copper-carbazolide complexes, we have recently described photoinduced, copper-catalyzed N-arylations and N-alkylations of carbazoles. Until now, there have been no examples of the use of other families of heteroatom nucleophiles in such photoinduced processes. Herein, we report a versatile photoinduced, copper-catalyzed method for c...

متن کامل

Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

Titanium dioxide (TiO2) nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES) as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide na...

متن کامل

Stabilization of Two Radicals with One Metal: A Stepwise Coupling Model for Copper-Catalyzed Radical–Radical Cross-Coupling

Transition metal-catalyzed radical-radical cross-coupling reactions provide innovative methods for C-C and C-heteroatom bond construction. A theoretical study was performed to reveal the mechanism and selectivity of the copper-catalyzed C-N radical-radical cross-coupling reaction. The concerted coupling pathway, in which a C-N bond is formed through the direct nucleophilic addition of a carbon ...

متن کامل

Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development.

Cu-catalysed arylation reactions devoted to the formation of C-C and C-heteroatom bonds (Ullmann-type couplings) have acquired great importance in the last decade. This review discusses the history and development of coupling reactions between aryl halides and various classes of nucleophiles, focusing mostly on the different mechanisms proposed through the years. Selected mechanistic investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 338 6107  شماره 

صفحات  -

تاریخ انتشار 2012